

Report ID 2018-W12 –UW23-BSK

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN AMS/18/10890

Analog, MEMS & Sensors Group (AMS)

Qualification of ST Bouskoura as Assembly and Test & Finishing site for selected products in SO8 package

General Purpose Analog Division

WHAT:

Progressing on activities related to production rationalization and capacity increase, ST is pleased to announce the transfer of some GPA (General Purpose Analog) products from ST Shenzhen to ST Bouskoura.

Please find more information related to the transfer of the impacted products:

	Current process	Modified process	Comment
Material	-	-	
Diffusion location	Ν	lo change	No change
Assembly location	ST Shenzhen	ST Bouskoura	
Test location	ST Shenzhen	ST Bouskoura	
Molding compound	Sumitomo G700KC	Sumitomo G700KC	No change
Die attach	ABLESTIK 8601S-25	ABLESTIK 8601S-25	No change
Lead frame	Copper 98x150mils	Copper 94x125mils	Pad size reduction
Wire	Copper wire 1 mil	Copper wire 1 mil	No change
Plating	Preplated e4	Matte Sn (e3)	
MSL		1	No change

Samples of vehicle test are available now and other samples will be launched upon customer's requests. Please submit requests for samples within 30 days of this notification.

WHY:

The purpose of the transfer is to rationalize our production tool and increase capacity.

HOW:

The qualification is based on representative Test vehicles, using internal ST rules for changes.
To validate the change, dedicated engineering trials have been performed and reliability report is attached.

IMPACTS OF THE CHANGE:

Form/Fit/Fonction : No change

WHEN:

For all impacted products, estimated 1st shipment start date is wk32 2018.

Marking and traceability:

Unless otherwise stated by customer's specific requirement, the traceability of the parts assembled with the new material set will be ensured by new internal sales type, date code and lot number.

The changes here reported will not affect the electrical, dimensional and thermal parameters keeping unchanged all the information reported on the relevant datasheets. There is -as well- no change in the packing process or in the standard delivery quantities.

Lack of acknowledgement of the PCN within 30 days will constitute acceptance of the change. After acknowledgement, lack of additional response within the 90 day period will constitute acceptance of the change (Jedec Standard No. 46-C).

Shipments may start earlier with the customer's written agreement.

	Manufactured under patents or patents pending					
ronics	Assembled in PbFree MSL: X PBT: XXX°C	n: COUNTRY Second level interconnect Bag sealed date: XX XXX XXXX Catergory: ECOPACK/Rohs				
S	TYPE	Commercial product				
croele	Total Qty: Trace codes	Finished good XXXX PPYWWLLL WX TF PPYWWLLL WX TF PPYWWLLL WX TF				
	Marking MARKING					
S	Bulk Id Number					
	Bar code					
	Please provide the bulk Id for any inquiry					

On trace code "PP" code will move from "GK" (ST Shenzhen) to "CZ" (ST Bouskoura)

Reliability Report *Qualification of ST Bouskoura as Assembly and Test & Finishing site for selected products* in SO8 package of GPA Division

General Information

Product Line

Product Description

P/N **Product Group Product division** Package Silicon Process technology UW23 3.3 V powered, 15 kV ESD protected, up to 12 Mbps RS-485/ RS-422 transceiver ST3485ECDT AMS General Purpose Analog &RF S08 BCD3S

	Locations	
Wafer fab		ST Singapore,
Assembly plant		ST Bouskoura
Reliability Lab		, ST Catania

Related products ST1480ABDR ST1480ACDR ST3485EBDR ST3485ECDR ST3485EIDT ST4485EBDR

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicrolectronics.

TABLE OF CONTENTS

1	APPL	ICABLE AND REFERENCE DOCUMENTS	. 10
2	GLO	SSARY	. 10
		ABILITY EVALUATION OVERVIEW	
	3.1	OBJECTIVES	. 10
	3.2	CONCLUSION	. 10
4	DEVI	CE CHARACTERISTICS	. 11
		DEVICE DESCRIPTION	
	4.2	CONSTRUCTION NOTE	. 12
5	TEST	S RESULTS SUMMARY	. 13
	5.1	TEST VEHICLE	. 13
	5.2	TEST PLAN AND RESULTS SUMMARY	. 13
		TESTS DESCRIPTION	

<u>1</u> APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description			
JESD47	Stress-Test-Driven Qualification of Integrated Circuits			
0061692	Reliability tests and criteria for qualifications			
	· · ·			

2 GLOSSARY

DUT	Device Under Test
РСВ	Printed Circuit Board
SS	Sample Size

<u>3 RELIABILITY EVALUATION OVERVIEW</u>

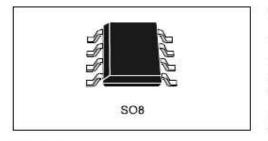
3.1 **Objectives**

To qualify the transfer of the ST3485ECDT and related products in SO8 package from ST Shenzhen to ST Bouskoura for General purpose analog.

3.2 Conclusion

Qualification Plan requirements will have to be fulfilled without issue. It is stressed that reliability tests have to show that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests have to demonstrate the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

4 DEVICE CHARACTERISTICS


4.1 **Device description**

ST3485EB, ST3485EC, ST3485EI, ST3485EIY

3.3 V powered, 15 kV ESD protected, up to 12 Mbps RS-485/ RS-422 transceiver

Datasheet - production data

Features

- ESD protection
 - ±15 kV IEC 61000-4-2 air discharge
 - ±8 kV IEC 61000-4-2 contact discharge
- Operate from a single 3.3 V supply no
- charge pump required
- Interoperable with 5 V logic
- 1 µA low current shutdown mode max.
 Guaranteed 12 Mbps data rate
- Guaranteed 12 Mbps data rate
 -7 to 12 V common mode input voltage range
- Half duplex versions available
- Industry standard 75176 pinout

- Current limiting and thermal shutdown for driver overload protection
- Guaranteed high receiver output state for floating inputs with no signal present
- Allow up to 64 transceivers on the bus
- Available in SO8 package
- Automotive grade (ST3485EIY)

Description

The ST3485EB/EC/EI/EIY device is ±15 kV ESD protected, 3.3 V low power transceiver for RS-485 and RS-422 communications. The device contains one driver and one receiver in half duplex configuration.

The ST3485E device transmits and receives at a guaranteed data rate of at least 12 Mbps.

All transmitter outputs and receiver inputs are protected to ±15 kV IEC 61000-4-2 air discharge.

The driver is short-circuit current limited and is protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high impedance state.

Table 1: Device summary

Order code	Temp. range	Package	Packing	
ST3485ECDR	0 to 70 °C			
ST3485EBDR	-40 to 85 °C	000.000	2500 parts per reel	
ST3485EIDT		SOB (tape and reel)		
ST3485EIYDT	-40 to 125 °C			

4.2 Construction note

	P/N ST3485ECDR	P/N STM706YM7F	P/N LM393DT				
Wafer/Die fab. information							
Wafer fab manufacturing location	ST Singapore	ST Singapore	ST Singapore				
Technology	BCD3S	HCMOS4	Bipolar				
Die finishing back side	RAW SILICON	RAW SILICON	RAW SILICON				
Die size (microns)	1950x2720	1350 x 1510µm	950 x 870 μm				
Bond pad metallization layers	AlSi	AlSiCu	AlSiCu				
Passivation type	P-VAPOX/NITRIDE/ POLYIMIDE	PSG+Silicon Ni- tride+Polyimide	Nitride				
	Assembly inform	ation					
Assembly site	ST Bouskoura	ST Bouskoura	ST Bouskoura				
Package description	SO8	SO8	SO8				
Molding compound	Sumitomo G700KC	EME G700KC	EME G700KC				
Frame material	Copper	Cu	Cu				
Die attach process	Epoxy Glue	Epoxy Glue	Epoxy Glue				
Die attach material	Ablestick 8601 - S25	Ablestick 8601-S25	8601S-25				
Wire bonding process	Tehrmosonic ball bonding	Thermosonic ball bonding	Thermosonic ball bonding				
Wires bonding materials/diameters	Cu 1 mil	Cu 1 mil	Cu 1 mil				
Lead finishing process	Electroplating	electroplating	electroplating				
Lead finishing/bump solder material	Matte Sn	Matte Sn	Matte Sn				

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lot #	Process/ Package	Product Line	Comments
1	BCD3S/SO8	UW23	Lot CZ5430CN
2	HCMOS4/SO8	16VA	Lot CZ53607S
3	Bipolar/SO8	0393	Lot CZ53005LRP

5.2 Test plan and results summary

							Failu	ire/SS	
Test	РС	Std ref.	Conditions	SS	Steps	Lot1 UW23	Lot 2 16VA	Lot3 0393	Note
HTB/		JESD22			168 H	0/77	0/77	0/78	
HTOL	Ν	A-108	$Ta = 125^{\circ}C, BIAS$		500 H	0/77	0/77	0/78	
mol		A-100			1000 H	0/77	0/77	0/78	
					168 H	0/45	0/45	0/77	
HTSL	Ν	JESD22	$Ta = 150^{\circ}C$		500 H	0/45	0/45	0/77	
IIISL	14	A-103	1a = 150 C		1000 H	0/45	0/45	0/77	
РС		JESD22 A-113	Drying 24 H @ 125°C JL1 (Store 168 H @ Ta=85°C Rh=85%) JL2 (Store 192 H @ Ta=30°C Rh=60%) Over Reflow @ Tpeak=260°C 3 times		Final	PASS MSLS1	PASS MSLS1	PASS MSLS1	
AC	Y	JESD22	Pa=2Atm / Ta=121°C		96 H	0/77	0/77	0/77	
AC	I	A-102	Pa=2Atm / Ta=121°C		168h	0/77	0/77		
					200 cy	0/77	0/77	0/77	
TC	Y	JESD22	Ta = -65° C to 150° C		500 cy	0/77	0/77	0/77	
ic	1	A-104	1a = -05 C 10 150 C		1000cy		0/77	0/77	
		JESD22			168 H	0/77	0/77		
THB	Y	JESD22 A-101	Ta = 85°C, RH = 85%, BIAS		500 H	0/77	0/77		
		A-101			1000 H	0/77	0/77		

5.3 Tests Description

Test name	Description	Purpose
Die Oriented		
HTOL High Temperature Operating Life HTB High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, sili- con degradation, wire-bonds degradation, ox- ide faults.
HTRB High Temperature Reverse Bias HTFB / HTGB High Temperature Forward (Gate) Bias	The device is stressed in static configura- tion, trying to satisfy as much as possible the following conditions: low power dissipation; max. supply voltage compatible with diffu- sion process and internal circuitry limita- tions;	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. To maximize the electrical field across either reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide ageing, layout
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the pack- age materials, sometimes higher than the max. operative temperature.	sensitivity to surface effects. To investigate the failure mechanisms acti- vated by high temperature, typically wire- bonds solder joint ageing, data retention faults, metal stress-voiding.
ELFR Early Life Failure Rate	The device is stressed in biased conditions at the max junction temperature.	To evaluate the defects inducing failure in early life.
Package Oriented		
PC Preconditioning	The device is submitted to a typical temper- ature profile used for surface mounting de- vices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" ef- fect and delamination.
AC Auto Clave (Pres- sure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cy- cling	The device is submitted to cycled tempera- ture excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the dif- ferent thermal expansion of the materials in- teracting in the die-package system. Typical failure modes are linked to metal displace- ment, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.

Report ID 2018-W12 –UW23-BSK

Test name	Description	Purpose	
TF / IOL Thermal Fatigue / Intermittent Oper- ating Life	The device is submitted to cycled tem- perature excursions generated by power cycles (ON/OFF) at T ambient.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materi- als interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds fail- ure, die-attach layer degradation.	
THB Temperature Hu- midity BiasThe device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambi- ent temperature and relative humidity.		To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.	
Other			
ESD Electro Static Dis- charge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model	To classify the device according to his suscep- tibility to damage or degradation by exposure to electrostatic discharge.	
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Re- moving the direct current no change in the supply current must be observed.	To verify the presence of bulk parasitic effect inducing latch-up.	